首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11380篇
  免费   920篇
  国内免费   919篇
  2024年   17篇
  2023年   282篇
  2022年   254篇
  2021年   444篇
  2020年   442篇
  2019年   513篇
  2018年   466篇
  2017年   354篇
  2016年   400篇
  2015年   492篇
  2014年   714篇
  2013年   918篇
  2012年   528篇
  2011年   701篇
  2010年   464篇
  2009年   590篇
  2008年   604篇
  2007年   601篇
  2006年   515篇
  2005年   489篇
  2004年   371篇
  2003年   324篇
  2002年   262篇
  2001年   213篇
  2000年   216篇
  1999年   192篇
  1998年   176篇
  1997年   154篇
  1996年   137篇
  1995年   148篇
  1994年   110篇
  1993年   125篇
  1992年   99篇
  1991年   106篇
  1990年   85篇
  1989年   69篇
  1988年   60篇
  1987年   47篇
  1986年   57篇
  1985年   75篇
  1984年   81篇
  1983年   54篇
  1982年   75篇
  1981年   39篇
  1980年   41篇
  1979年   33篇
  1978年   24篇
  1977年   11篇
  1976年   12篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 580 毫秒
71.
Variation among modules of a single genet could provide a means of adaptation to environmental heterogeneity. Two mechanisms that can give rise to such variation are programmed developmental change and phenotypic plasticity. I quantified the relative roles of these two mechanisms in causing within-individual variation in six leaf traits of an annual plant. Under controlled temperatures, morphological, anatomical, and physiological traits of leaves produced by the same individual differed as a function of both the node at which they were produced and the temperature they experienced during development. Temperature, node, and interactions between them all contributed significantly to the pattern of within-individual variation in leaf traits, although the relative contributions of programmed developmental change and phenotypic plasticity differed for different traits. I hypothesize that these two mechanisms for generating within-individual variation in module phenotype are favored by different patterns of environmental heterogeneity; when the sequence of environments encountered by modules of a single individual is predictable, programmed developmental change may be favored, and phenotypic plasticity may be favored when the sequence of environments is irregular with respect to individual ontogeny and therefore not predictable.  相似文献   
72.
73.
It has been established that living things are sensitive to extremely low-frequency magnetic fields at vanishingly small intensities, on the order of tens of nT. We hypothesize, as a consequence of this sensitivity, that some fraction of an individual’s central nervous system activity can be magnetically detected by nearby individuals. Even if we restrict the information content of such processes to merely simple magnetic cues that are unconsciously received by individuals undergoing close-knit continuing exposure to these cues, it is likely that they will tend to associate these cues with the transmitting individual, no less than would occur if such signals were visual or auditory. Furthermore, following what happens when one experiences prolonged exposure to visual and like sensory inputs, it can be anticipated that such association occurring magnetically will eventually also enable the receiving individual to bond to the transmitting individual. One can readily extrapolate from single individuals to groups, finding reasonable explanations for group behavior in a number of social situations, including those occurring in families, animal packs, gatherings as found in concerts, movie theaters and sports arenas, riots and selected predatory/prey situations. The argument developed here not only is consistent with the notion of a magnetic sense in humans, but also provides a new approach to electromagnetic hypersensitivity, suggesting that it may simply result from sensory overload.  相似文献   
74.
Thermographic visualization of cell death in tobacco and Arabidopsis   总被引:4,自引:0,他引:4  
Pending cell death was visualized by thermographic imaging in bacterio‐opsin transgenic tobacco plants. Cell death in these plants was characterized by a complex lesion phenotype. Isolated cell death lesions were preceded by a colocalized thermal effect, as previously observed at sites infected by tobacco mosaic virus (TMV) ( Chaerle et al. 1999 Nature Biotechnology 17, 813–816). However, in most cases, a coherent front of higher temperature, trailed by cell death, initiated at the leaf base and expanded over the leaf lamina. In contrast to the homogenous thermal front, cell death was first visible close to the veins, and subsequently appeared as discrete spots on the interveinal tissue, as cell death spread along the veins. Regions with visible cell death had a lower temperature because of water evaporation from damaged cells. In analogy with previous observations on the localized tobacco–TMV interaction ( Chaerle et al. 1999 ), the kinetics of thermographic and continuous gas exchange measurements indicated that stomatal closure preceded tissue collapse. Localized spontaneous cell death could also be presymptomatically visualized in the Arabidopsis lsd2 mutant.  相似文献   
75.
It is generally assumed in dendroecological studies that annual tree-ring growth is adequately determined by a linear function of local or regional precipitation and temperature with a set of coefficients that are temporally invariant. However, various researchers have maintained that tree-ring records are the result of multivariate, often nonlinear biological and physical processes. To describe critical processes linking climate variables with tree-ring formation, the process-based tree-ring Vaganov–Shashkin model (VS-model) was successfully used. However, the VS-model is a complex tool requiring a considerable number of model parameters that should be re-estimated for each forest stand. Here we present a new visual approach of process-based tree-ring model parameterization (the so-called VS-oscilloscope) which allows the simulation of tree-ring growth and can be easily used by researchers and students. The VS-oscilloscope was tested on tree-ring data for two species (Larix gmeliniiand Picea obovata) growing in the permafrost zone of Central Siberia. The parameterization of the VS-model provided highly significant positive correlations (p < 0.0001) between simulated growth curves and original tree-ring chronologies for the period 1950–2009. The model outputs have shown differences in seasonal tree-ring growth between species that were well supported by the field observations. To better understand seasonal tree-ring growth and to verify the VS-model findings, a multi-year natural field study is needed, including seasonal observation of the thermo-hydrological regime of the soil, duration and rate of tracheid development, as well as measurements of their anatomical features.  相似文献   
76.
77.
Type III secreted effectors shape the potential of bacterial pathogens to cause disease on plants. Some effectors affect pathogen growth only in specific niches. For example, HopZ3 causes reduced epiphytic growth of Pseudomonas syringae strain B728a on Nicotiana benthamiana. This raises the question of whether genes important for effector-triggered disease resistance are needed for responses to effectors whose major effect is in the epiphytic niche. We report that SGT1b, a protein known to be important for defense activation, is essential for HopZ3-mediated suppression of PsyB728a epiphytic growth. SGT1b is required for HopZ3- and AvrB3-induced cell death in N. benthamiana plants that express the Pto resistance gene from tomato. We suggest that HopZ3 activates R gene mediated responses in N. benthamiana.  相似文献   
78.
The replacement series   总被引:15,自引:0,他引:15  
  相似文献   
79.
The viral infection by SARS-CoV-2 has irrevocably altered the life of the majority of human beings, challenging national health systems worldwide, and pushing researchers to rapidly find adequate preventive and treatment strategies. No therapies have been shown effective with the exception of dexamethasone, a glucocorticoid that was recently proved to be the first life-saving drug in this disease. Remarkably, around 20 % of infected people develop a severe form of COVID-19, giving rise to respiratory and multi-organ failures requiring subintensive and intensive care interventions. This phenomenon is due to an excessive immune response that damages pulmonary alveoli, leading to a cytokine and chemokine storm with systemic effects. Indeed glucocorticoids’ role in regulating this immune response is controversial, and they have been used in clinical practice in a variety of countries, even without a previous clear consensus on their evidence-based benefit.  相似文献   
80.
We developed an experimental system to characterize the suppressive effect of extremely low-frequency (ELF) electric fields (EFs) on the stress response. We assessed differences in the EF effects by age and gender. Control, EF-alone, immobilization-alone, and co-treated groups were subjected to an EF (50 Hz, 10 kV/m). Co-treated mice were exposed to the EF for 60 min, with immobilization during the latter half. Our results indicate that the suppressive effects of ELF EFs on the stress response in immobilized mice occur regardless of gender or age. As stress plays an important role in the onset and progression of various diseases, these findings may have broad implications for understanding the efficacy of EFs in animal, and perhaps human, health. Bioelectromagnetics. 2020;41:156–163. © 2019 Bioelectromagnetics Society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号